来源:在职研究生联盟网 时间:2023-12-15 15:55:20
课时安排:2天培训方式:企业内训课程类别:项目管理
大数据分析与挖掘综合能力提升实战课程特色与背景
通过本课程的学习,达到如下目的:
1、 了解数据分析基础知识,掌握数据分析的基本过程。
2、 学会数据分析的框架和思路,掌握常用数据分析方法来分析问题。
3、 熟悉数据分析的基本过程,掌握Excel高级数据分析库操作。
4、 熟练使用图表制作工具,掌握图表美化原则,正确使用图表来表达观点。
5、 掌握数据分析报告的写作技巧及要点,全面正确地呈现分析结果。
课程大纲
【课程大纲】
第一部分:认识数据分析
问题:数据分析是神马?数据分析基本过程?
1、 数据分析面临的常见问题
? 不知道分析什么(分析目的不明确)
? 不知道怎样分析(缺少分析方法)
? 不知道收集什么样的数据(业务理解不足)
? 不知道下一步怎么做(不了解分析过程)
? 看不懂数据表达的意思(数据解读能力差)
? 担心分析不够全面(分析思路不系统)
2、 认识数据分析
? 什么是数据分析
? 数据分析的三大作用
? 数据分析的三大类别
案例:喜欢赚“差价”的营业员
3、 数据分析需要什么样的能力
? 懂业务、懂管理、懂分析、懂工具、懂呈现
4、 大数据应用的四层结构
? 数据基础层、数据模型层、业务模型层、业务应用层
5、 数据分析与挖掘在企业中的应用
第二部分:数据分析基本过程
1、 数据分析的六步曲
2、 步骤1:明确目的--理清思路
? 先有数据还是先有问题?
? 确定分析目的
? 确定分析思路
3、 步骤2:数据收集—理清思路
? 明确收集数据范围
? 确定收集来源
? 确定收集方法
演练:Excel数据导入练习
4、 步骤3:数据预处理—寻找答案
? 数据清洗、转化、提取、计算
? 数据质量评估
演练:Excel数据预处理练习
5、 步骤4:数据分析--寻找答案
? 分析方法选择
? 构建合适的分析模型
? 分析工具选择
6、 步骤5:数据展示--观点表达
? 选择合适的可视化工具
? 选择恰当的图表
7、 步骤6:报表撰写--观点表达
? 选择报告种类
? 完整的报告结构
8、 数据分析的三大误区
案例:终端精准营销项目过程讨论
第三部分:数据分析方法篇
问题:数据分析有什么方法可依?不同的方法适用解决什么样的问题?
1、 数据分析方法的层次
? 基本分析法(对比/分组/结构/趋势/…)
? 综合分析法(交叉/综合评价/杜邦/漏斗/…)
? 高级分析法(相关/方差/验证/回归/时序/…)
? 数据挖掘法(聚类/分类/关联/RFM模型/…)
2、 统计分析常用指标
? 计数、求和、百分比(增跌幅)
? 集中程度:均值、中位数、众数
? 离散程度:极差、方差/标准差
? 分布形态:偏度、峰度
3、 基本分析方法及其适用场景
? 对比分析(查看数据差距)
演练:按性别、省份、产品进行分类统计
? 分组分析(查看数据分布)
演练:银行信用卡月消费分析(银行)
演练:呼叫中心接听电话效率分析(呼叫中心)
演练:客服中心科学排班人数需求分析(客服中心)
演练:客户年龄分布分析
案例:排班后面隐藏的猫腻
? 结构分析(评估事物构成)
案例:用户市场占比结构分析
案例:物流费用占比结构分析(物流)
? 趋势分析(发现变化规律)
案例:破解零售店销售规律
4、 综合分析方法及其适用场景
? 交叉分析(两维分析)
演练:用户性别+地域分布分析
? 综合评价法(多维指标归一)
演练:人才选拔评价分析(HR)
案例:南京丈母娘选女婿分析表格
? 杜邦分析法(关键因素分析-财务数据分析)
案例:电信市场占有率分析
演练:服务水平提升分析(呼叫中心)
案例:销售额的影响因素分析(零售店/电商)
? 漏斗分析法(关键流程环节分析-流失率与转化率分析)
演练:终端销售流程分析(电信营业厅)
案例:业务办理流程优化分析(银行营业厅)
案例:物流配送效率分析(物流)
? 矩阵分析法(产品策略分析-象限图分析法)
案例:工作安排评估
案例:HR人员考核与管理
案例:波士顿产品策略分析
5、 最合适的分析方法才是硬道理。
第四部分:解读数据分析结果
问题:数据多,看不明白,不知道从何处看出业务问题?
1、 数据分析的目的
? 发现业务规律
? 发现业务异常
? 寻找业务策略
2、 对比分析及业务策略
? 看差距,补短板
? 看极值,评优劣
? 看异常,找原因
3、 结构分析及业务策略
? 看占比,聚焦重点
? 看失衡,优化结构
4、 趋势分析及业务策略
? 看变化,说趋势
? 看峰谷,找规律
? 看异常,找原因
5、 解读要符合业务逻辑
案例:销售额数据分析
案例:营业厅工单结构分析
案例:营业厅客流趋势分析
第五部分:数据分析思路篇
问题:数据分析思路是怎样的?如何才能全面/系统地分析而不遗漏?
1、 数据分析的思路
? 从KPI指标开始
? 从营销/管理模型开始
2、 常用分析思路模型
3、 企业外部环境分析(PEST分析法)
案例:电信行业外部环境分析
4、 用户消费行为分析(5W2H分析法)
案例:用户购买行为分析(5W2H)
5、 公司整体经营情况分析(4P营销理论)
6、 业务问题专题分析(逻辑树分析法)
案例:用户增长缓慢分析
7、 用户使用行为研究(用户使用行为分析法)
案例:终端销售流程分析
第六部分:图表呈现篇
问题:如何让你的分析结果更直观易懂?如何让数据“慧”说话?
1、 图表类型与作用
2、 常用图形及适用场景
3、 常用图形
? 柱状图(对比分析)
? 条形图(对比分析)
? 折线图(趋势分析)
? 饼图(结构分析)
? 雷达图(多重数据比较)
演练:图形绘制
4、 复杂图形
? 平均线图(对比分析)
? 双坐标图(不同量纲呈现)
? 对称条形图(对比)
? 散点图/气泡图(矩阵分析法)
? 瀑布图(成本、收益构成分析)
? 漏斗图(用户转化率分析)
演练:图形绘制
5、 动态图表画法技巧
6、 图表美化原则
7、 表格呈现
8、 优秀图表示例解析
第七部分:分析报告撰写
问题:如何让你的分析报告显得更专业?
1、 分析报告的种类与作用
2、 报告的结构
3、 报告命名的要求
4、 报告的目录结构
5、 前言
6、 正文
7、 结论与建议
8、 优秀报告展现与解析
案例:营业时间调整专题报告
案例:企业业务运营分析报告
第八部分:数据分析实战篇(中级)
影响因素分析,数值预测模型。
1、 相关分析(衡量变量间的的相关性)
问题:营销费用会影响销售额吗?影响程度大吗?
? 什么是相关关系
? 相关系数:衡量相关程度的指标
? 相关分析的步骤与计算公式
? 相关分析应用场景
演练:体重与腰围的关系
演练:营销费用与销售额的关系
案例:酒楼生意好坏与报纸销量的相关分析
2、 方差分析
问题:哪些才是影响销量的关键因素?
? 方差分析解决什么问题
? 方差分析种类:单因素/双因素可重复/双因素无重复
? 方差分析的应用场景
? 如何解决方差分析结果
演练:终端摆放位置与终端销量有关吗?(单因素方差分析)
演练:时间、区域是否是影响终端销量的关键因素(双因素无重复方差分析)
演练:广告和价格是影响终端销量的关键因素吗(双因素可重复)
案例:2015年大学生工资与父母职业的关系
案例:医生洗手与婴儿存活率的关系
3、 回归分析(预测)
问题:如何预测未来的销售量(定量分析)?
? 回归分析的基本原理和应用场景
? 回归分析的种类(一元/多元、线性/曲线)
? 回归分析的几种常用方法
? 回归分析的五个步骤与结果解读
? 回归预测结果评估(如何评估预测质量,如何选择最佳回归模型)
演练:散点图找推广费用与销售额的关系(一元线性回归)
演练:推广费用、办公费用与销售额的关系(多元线性回归)
演练:最佳选择的预测销售额的回归模型(一元曲线回归)
? 回归分析(带分类变量)
案例:汽车销量的季度预测
演练:工龄、性别与终端销量的关系
讨论:终端销售预测分析(营业厅)
4、 时序分析(预测)
问题:随着时间变化,未来的销量变化趋势如何?
? 时序分析的应用场景(基于时间的变化规律)
? 移动平均的预测原理
? 指数平滑的预测原理
案例:销售额的时序预测及评估
演练:产品销量预测及评估
第九部分:数据挖掘实战篇(高级)
1、 聚类分析
问题:如何实现客户细分,开发符合细分市场的新产品?
? 聚类分析及其作用
? 聚类分析的种类
? 层次聚类:发现多个类别
? R型聚类与Q型聚类的区别
演练:中国省市经济发展情况分析(Q型聚类)
演练:裁判评分的标准衡量(R型聚类)
? K均值聚类
演练:宝洁公司如何选择新产品试销区域?
演练:如何评选优秀员工?
2、 分类分析
案例:美国零售商(Target)如何预测少女怀孕
问题:如何提取客户流失者、拖欠货款者的特征?如何预测其流失的概率?
? 分类与聚类
? 决策树分类的原理
? 如何评估分类性能
演练:识别银行欠货风险,提取欠货者的特征
3、 关联分析
案例:啤酒与尿布、飓风与蛋挞
问题:购买面包的人是否也会购买牛奶?他们同时购买哪些产品?
? 关联分析解决什么样的问题
? 如何提取关联规则
? 关联规则的应用场景
演练:商场购物篮分析
4、 RFM模型
问题:如何评估客户的价值?如何针对不同客户采取不同的营销策略?
? RFM模型介绍
? RFM的客户细分框架理解
演练:淘宝客户选择促销客户的方式
演练:结合响应模型,宜家IKE实现最大化营销利润
实战:电信客户流失分析与预警模型
结束:课程总结与问题答疑。